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The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning
with the mouth and ending with the anus or cloacal opening. Each organ represents a
unique environment for resident microorganisms. Due to their simple digestive anatomy,
snakes are good models for studying microbiome variation along the GIT. Cloacal
sampling captures the majority of the microbial diversity found in the GIT of snakes—yet
little is known about the oral microbiota of snakes. Most research on the snake
mouth and gut microbiota are limited to studies of a single species or captive-bred
individuals. It therefore remains unclear how a host’s life history, diet, or evolutionary
history correlate with differences in the microbial composition within the mouths and
guts of wild snakes. We sampled the mouth and gut microbial communities from
three species of Asian venomous snakes and utilized 16S rRNA microbial inventories
to test if host phylogenetic and ecological differences correlate with distinct microbial
compositions within the two body sites. These species occupy three disparate habitat
types: marine, semi-arboreal, and arboreal, our results suggest that the diversity of
snake mouth and gut microbial communities correlate with differences in both host
ecology and phylogeny.

Keywords: 16S rRNA, host ecology, mouth microbiome, Philippines, venomous snakes, gut microbiome

INTRODUCTION

The organs within the gastrointestinal tract (GIT) of vertebrates (mouth, stomach, colon, cloaca,
etc.) harbor microbiomes that serve fundamental roles in a variety of processes that benefit their
animal hosts, including digestion, immunity, and nutrient acquisition (Colston and Jackson, 2016;
Varela et al., 2018; Arizza et al., 2019; Qin et al., 2019). As such, studies of microbiomes are essential
to understanding host health, and can also be utilized to address interesting questions across broad
fields in evolutionary biology, from processes of coevolution and adaptation to the evolution of
antibiotic resistance (Hird, 2017; Ul-Hasan et al., 2019). To date, most vertebrate microbiome
research has focused on humans and other mammals (Colston and Jackson, 2016; Hird, 2017; Qin
et al., 2019); however, increased availability and utilization of culture-independent techniques, such
as next-generation sequencing technologies and 16S ribosomal RNA (rRNA) microbial inventories,
has expanded our knowledge of the diversity, structure, and potential functional capabilities of
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these symbiotic bacterial communities (Bletz et al., 2017; Medina
et al., 2017). Furthermore, such techniques have allowed for
microbiome studies across an increasingly wide taxonomic
diversity of vertebrate organisms, including birds (Hird et al.,
2015; Waite and Taylor, 2015), fishes (Clements et al., 2014;
Givens et al., 2015; Sullam et al., 2015; Gajardo et al., 2016),
amphibians (Bletz et al., 2016, 2017; Bird et al., 2018; Varela
et al., 2018; Rebollar and Harris, 2019), and reptiles (Hong et al.,
2011; Keenan et al., 2013; Colston et al., 2015; Hyde et al., 2016;
Ren et al., 2016; Allender et al., 2018; Arizza et al., 2019; Tang
et al., 2019). Despite these advances, large gaps remain in our
understanding of the non-mammalian vertebrate microbiome,
especially among wild reptiles (Colston and Jackson, 2016;
Hird, 2017; Krishnankutty et al., 2018; Qin et al., 2019;
Tang et al., 2019).

Squamate reptiles (snakes, lizards, and amphisbaenids)
possess the ability to persist in a wide variety of habitats,
occurring on every continent but Antarctica (Vitt et al., 2003;
Vitt and Caldwell, 2013). These reptiles display a vast diversity of
life history traits, particularly in dietary habits and reproductive
modes (Shine and Bonnet, 2000; Vitt and Caldwell, 2013).
They have also played an important role in addressing many
higher-level questions in ecology and evolutionary biology across
numerous fields of study that include using venom to study
evolutionary key innovations (Casewell et al., 2013; Sunagar
et al., 2016; Calvete, 2017) and studies of phenotypic evolution
(Wagner et al., 2018; Watanabe et al., 2019), reproductive mode
(Blackburn, 2006; Pyron and Burbrink, 2014), and adaptive
radiation (Losos and Miles, 2002). Despite such a rich history
of foundational research on the group, microbiome evolution
among squamate reptiles remains poorly understood. Previous
work has determined that different reptilian body sites along
the GIT possess distinct microbiomes (Keenan et al., 2013;
Colston et al., 2015; Hyde et al., 2016; Tang et al., 2019);
however, few studies to date have investigated the diversity and
composition of the squamate reptile mouth microbiome (Shek
et al., 2009; Goldstein et al., 2013; Hyde et al., 2016; Krishnankutty
et al., 2018). Additionally, most studies of the reptilian gut
(endogenous, cloacal) microbiomes are limited to comparisons
between individuals of the same species (Keenan et al., 2013;
Colston et al., 2015; McLaughlin et al., 2015; Hyde et al., 2016;
Allender et al., 2018; Arizza et al., 2019; Tang et al., 2019),
with few studies investigating how the gut microbiome differs
between taxa (Hong et al., 2011; Ren et al., 2016; Qin et al., 2019;
Zhang et al., 2019). By comparing the microbiomes of reptiles
that have different habitat preferences, diets, and ecologies, we
can begin to understand the relationship between evolutionary
factors and the diversity and composition of host-associated
microbial communities.

By far one of the most successful and charismatic radiations
of squamates are snakes (Squamata: Serpentes), with more
than 3,840 species recognized currently (Uetz et al., 2020)
across all major biomes on the planet, including freshwater
and marine environments, and even southern regions of the
tundra (Vitt and Caldwell, 2013). Represented by this global
vertebrate radiation is an incredible diversity of ecologies and life
histories, including the evolution of a wide spectrum of dietary

preferences and adaptations (Vitt et al., 2003; Colston et al., 2010;
Vitt and Caldwell, 2013; Tang et al., 2019). Interestingly, such
variation in diet preferences and the degree of specialization
has evolved despite the presence of a rather simple digestive
anatomy, and for this reason snakes are widely used as ideal
systems for studying digestive physiology (Secor and Diamond,
1998; Castoe et al., 2013). Unfortunately, we continue to
have a limited understanding of the composition, diversity,
and functional capabilities of snake microbiomes, particularly
gut and mouth microbial communities (Krishnankutty et al.,
2018)—a critical component to understanding the important
roles host-specific microbiomes may have played in snake
adaptive evolution. Currently, the culture-independent snake
gut microbiome literature consists of a few studies that
describe the diversity present at different segments of the snake
gastrointestinal tract (excluding mouth; Hill et al., 2008; Colston
et al., 2015; McLaughlin et al., 2015; Tang et al., 2019), one
study investigating the composition of gut microbiota in captive
pythons (again, excluding mouth; Costello et al., 2010), one
study comparing small and large intestinal bacteria among
three species of snakes (Qin et al., 2019), and one comparative
study of bacterial communities sequenced from fecal samples
from four species of farmed snakes in China (Zhang et al.,
2019). Such a general paucity of data on snake host-associated
microbiomes extends to the burgeoning studies of the venom-
microbiome, which aims to describe the presence and diversity
of venom-associated microbial communities to address questions
of how microorganisms colonize and inhabit venom glands
(McFall-Ngai, 2014; Ul-Hasan et al., 2019). For example, the oral
cavity of snakes can harbor an extensive diversity of bacteria,
including potentially pathogenic groups that may cause post-
bite infection (Shek et al., 2009; Lam et al., 2011; Krishnankutty
et al., 2018). Such host-microbe interactions that occur in the
venom microenvironment and the oral cavity of snakes also
remain largely understudied (Ul-Hasan et al., 2019). Until more
comparative and baseline data on host-specific microbiomes
among snakes becomes available, our understanding of how
host ecology, venom system dynamics, and evolutionary history
correlate with, and are impacted by, these microbial communities
remains incomplete.

In this study, we present novel comparisons of host
microbiome diversity and composition among three venomous
snake species from the Philippines in Southeast Asia, each of
which possesses a distinct ecology: (1) the blue-lipped sea krait
(Family Elapidae: Laticauda laticaudata) is a neurotoxic, marine
species (Leviton et al., 2014); (2) the Philippine pit viper (Family
Viperidae: Trimeresurus flavomaculatus) is a hemotoxic, strictly-
arboreal, terrestrial species (Sugihara et al., 1983; Nikai et al.,
1985; Debono et al., 2019); and (3) the mangrove snake (Family
Colubridae: Boiga dendrophila) is a semi-arboreal, terrestrial
species that possesses a bird-specific toxin in its venom referred
to as denmotoxin (Pawlak et al., 2006; Pawlak and Kini, 2008).
These key differences, and the general availability of these
three species in the field, made them ideal for investigating
the influence and interaction of host ecology and evolutionary
history (phylogenetic relatedness) on gut and mouth microbiome
structure and diversity. Laticauda laticaudata is an amphibious
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marine snake in the family Elapidae that is widely distributed
across Southeast Asia and comes to shore only to rest and lay
eggs (Leviton et al., 2014). This species can be observed hiding in
crevices on coral reefs and they feed primarily on eels (Dabruzzi
et al., 2012). The two terrestrial species, T. flavomaculatus and
B. dendrophila, are common snakes found throughout large
regions of the Philippines (Siler et al., 2011; Brown et al., 2013).
Trimeresurus flavomaculatus is an ovoviviparous pit viper in the
family Viperidae that prefers more arboreal microhabitats, often
preying on frogs and small mammals (Leviton, 1962; Brown et al.,
2013; Leviton et al., 2014). In comparison, Boiga dendrophila is an
oviparous mangrove snake in the family Colubridae that prefers
more shrub- and ground-level microhabitats (i.e., semi-arboreal)
and feeds primarily on birds (Brown et al., 2013).

Herein, we provide an assessment and summary of microbial
diversity and composition of the mouth and gut microbiomes
among these three species of wild venomous snakes to
identify patterns associated with host ecology (e.g., habitat
preferences and specializations, etc.) and host species differences.
The results contribute to a nascent body of literature on
wild reptile endogenous microbiomes and specifically expands
our knowledge on snake mouth and gut microbiomes, with
which researchers can begin to address broader questions in
evolutionary biology and digestive physiology as they apply to
host-microbe interactions.

MATERIALS AND METHODS

Sample Collection
Fieldwork was conducted from May 27 to June 4, 2018 on two
islands of the Babuyan Island Group—Calayan and Camiguin
Norte. Cloacal swabs are an effective proxy for sampling gut
microbial diversity in snakes (Colston et al., 2015), therefore
we used cloacal swabs to sample gut microbial diversity in this
study. Gut microbiome samples were collected by inserting a
sterile swab (MWE, Corsham, United Kingdom) into the cloaca
of the individual for approximately 3–4 s, twirling the swab 2–
4 times. We collected mouth microbiome samples by swabbing
the tongue, teeth, and roof of the snake’s mouth 4–5 times
with sterile swabs (Puritan Medical Products, Guilford, ME,
United States). We swabbed 22 adult individuals representing
the three focal species: Laticauda laticaudata (N = 7 [four males,
three individuals not sexed], SVL 680–855 mm), Trimeresurus
flavomaculatus (N = 7 [four females, three individuals not sexed],
SVL 308–900 mm), and Boiga dendrophila (N = 8 [four males,
four females], SVL 814–1,395 mm) (Supplementary Table S1).
All swabs were preserved and stored in DNA/RNA Shield
(Zymo Research Products, Irvine, CA, United States) at the
time of collection at ambient temperature in field conditions
until returned to the United States (10–14 days) where they
were stored in a –20◦C freezer until DNA extraction. All
samples were collected in strict accordance with the regulations
established by the University of Oklahoma’s Institutional Animal
Care and Use Committee (IACUC Permit Nos: R17–019). Field
collection and export permits were provided by the Biodiversity
Management Bureau (BMB) of the Philippine Department of

Environment and Natural Resources (DENR) Nos. 260 (Renewal)
and 273 (Renewal).

DNA Extraction, PCR Amplification, and
Sequencing
Genomic DNA was extracted from all 44 swabs using
XpeditionTM Soil/Fecal DNA MiniPrep kits (Zymo Research
Products). DNA concentration for each extracted sample was
determined using a QuantusTM Fluorometer (Promega, Madison,
WI, United States). Ten sterile swabs were extracted alongside
the 44 samples to be used as negative controls and three of the
10 negative controls were amplified and sequenced using the
following methods. Using a one-step Polymerase Chain Reaction
(PCR) method, we amplified the V4 hypervariable region of
the 16S rRNA gene using primers described in Kozich et al.
(2013). Two microliters of PCR product from each sample was
visualized using gel electrophoresis and the remaining 18 µL was
cleaned with KAPA Pure Beads (Roche Sequencing Solutions,
Pleasanton, CA, United States). After quantification, all samples
were normalized to 10 nM of DNA before pooling samples into
a sterile, 1.5 mL microcentrifuge tube. If the DNA quantity of
a sample was above 10 nM, 5 µL of the sample was added to a
calculated amount of sterile, laboratory grade water to dilute the
sample to 10 nM. After dilution, 4 µL of the diluted PCR product
was added to the final pool. In contrast, if the DNA quantity of a
sample was below 10 nM, no water was added to the sample and
2 µL of the PCR product was added to the final pool. Sequencing
was performed at the University of Oklahoma Consolidated Core
Lab using the 2 × 250 bp paired-end sequencing on a single run
of an Illumina MiSeq.

Sequence Analysis
Adapter sequences were trimmed from the paired-end assembled
raw sequencing reads using AdapterRemoval v2 (Schubert et al.,
2016). Sequence data was analyzed using the QIIME 2 software
package (Bolyen et al., 2019), and the sequences were clustered
into operational taxonomic units (OTUs) with a closed-reference
OTU database at 97% sequencing similarity using VSEARCH
(Rognes et al., 2016) against the Silva 132 database (Quast et al.,
2012). A total of 9,190 OTUs were found among the 737,795
sequences obtained. The OTU table was rarified to a sequence
count of 500 for downstream analyses, which removed 10 samples
from the dataset (N = 5 each for both mouth and gut samples;
Supplementary Table S1 and Supplementary Figure S1). Our
decision to rarefy samples to a sequence count of 500 was
based on our specific dataset and the associated rarefaction
curves (Supplementary Figure S1; Hughes and Hellmann, 2005;
Aguirre de Cárcer et al., 2011; Weiss et al., 2017). As a result,
the 10 removed samples were excluded from analysis due to
low sequence counts and low post-amplification DNA quantities
compared to the other samples that amplified well above a
sequence count of 500. Raw sequence data generated in this
study can be found in the Sequence Read Archive (SRA) under
accession no. PRJNA702542. Analysis workflow can be found
on Github1.

1https://github.com/sierra-smith/16S_Microbiome_pipeline.git
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Statistical Analysis
To evaluate the effect of host ecology and phylogenetic
relatedness on gut and mouth diversity, alpha diversity (within
sample) and beta diversity (among samples) analyses were
performed using QIIME 2. Alpha and beta diversity analyses
were performed on both body sites separately and a value of
p < 0.05 was considered a statistically significant difference.
Alpha diversity analyses (Shannon Diversity, Faith’s Phylogenetic
Diversity, and Observed OTUs) were performed using QIIME
2 (Bolyen et al., 2019). To test whether the gut microbiomes
of these three snake species differed based on host ecology
(marine, semi-arboreal, arboreal), we analyzed beta diversity of
the gut samples using the phylogeny-based distance matrices
Unweighted- and Weighted-Unifrac (Lozupone et al., 2007,
2011) in addition to the Bray-Curtis dissimilarity matrix (Beals,
1984). We performed these three analyses on mouth microbiome
samples to test if the microbiomes differed among the three
species. Additionally, we separated samples based on the host’s
ecology (arboreal, semi-arboreal, marine) and performed the
same three analyses on the separated datasets to test for
differences in microbial diversity between the two body sites
(mouth vs. gut). All beta diversity analyses were visualized by
principal coordinate analysis (PCoA) using Qiime 2R (Bisanz,
2018) and Tidyverse (Wickham, 2017) packages in R version 3.6.1
(R Core Team, 2019). Diversity comparisons were conducted
using the alpha-group-significance and beta-group-significance
plugins in QIIME 2 which performs Pairwise PERMANOVAs to
test group significance (Anderson, 2001).

RESULTS

Our initial microbiome dataset consisted of 22 mouth and 22
gut samples taken from three different venomous snake species
(L. laticaudata, T. flavomaculatus, and B. dendrophila) which
occupy three distinct habitat types—14 marine samples (N = 7
mouth, N = 7 gut), 16 semi-arboreal samples (N = 8 mouth,
N = 8 gut), and 14 arboreal samples (N = 7 mouth, N = 7
gut; Supplementary Table S1). In total, 737,795 sequences were
obtained from these 44 samples with a total of 9,190 unique OTUs
classified using a 97% sequence similarity threshold against the
Silva database (v.132, Quast et al., 2012). After we rarefied the
44 samples to a sequencing depth of 500 for all downstream
statistical analyses, 10 out of the 44 samples were removed
(mainly B. dendrophila samples; Supplementary Table S1). The
34 remaining samples used in subsequent analyses (N = 17
mouth, N = 17 gut samples; N = 13 marine, N = 7 semi-arboreal,
N = 14 arboreal) consisted of 734,366 sequences with 9,033
unique OTUs classified based on 97% similarity using the Silva
database (Supplementary Table S1; Quast et al., 2012).

Taxonomic Composition of GIT Microbial
Communities Across Host Species and
Ecologies
A total of four dominant phyla (average relative
abundance >1.0%; Suenami et al., 2019) were observed among

all gut samples—Proteobacteria (64.87%), Bacteroidetes (5.73%),
Firmicutes (4.14%), and Actinobacteria (1.87%; Figure 1).
Four bacterial phyla had dominant abundances (avg >1.0%)
in the marine gut samples only—Epsilonbacteraeota (43.56%),
Verrucomicrobia (7.46%), Chlamydiae (4.40%), and Fusobacteria
(2.56%; Figure 1). Among arboreal (T. flavomaculatus) gut
samples only, we found that the most dominant phylum was
Proteobacteria (90.15%; Figure 1). Additionally, all seven gut
samples collected from this species contained Firmicutes (4.83%),
Bacteroidetes (2.47%), and Actinobacteria (1.81%; Figure 1). All
other phyla had an average relative abundance below 1%. The
same dominant phyla were found among gut samples collected
from the semi-arboreal species (B. dendrophila). Proteobacteria
was also the most dominant phylum within gut samples collected
from B. dendrophila (92.03%; Figure 1). Additionally, all gut
samples collected from this species contained Actinobacteria
(3.05%), Bacteroidetes (2.32%), and Firmicutes (2.12%; Figure 1).
All other phyla had an average relative abundance below 1%.

All six gut samples from the marine species (L. laticaudata)
contained Proteobacteria (24.07%), Bacteroidetes (10.94%),
Firmicutes (4.61%), Fusobacteria (2.56%), and Actinobacteria
(1.25%; Figure 1). Four out of the six gut samples from
L. laticaudata had high abundances of Epsilonbacteraeota
(average for four samples = 65.34%, total average = 43.56%) and
two phyla had a high abundance in only one marine gut sample
each: Verrucomicrobia (average for one sample = 44.07%) and
Chlamydiae (average for one sample = 26.38%; Figure 1).

When evaluating mouth microbiomes only, five dominant
phyla were present in samples collected from the three species
in varying abundances: Proteobacteria, Bacteroidetes, Firmicutes,
Actinobacteria, and Acidobacteria (Supplementary Table S2).
Two phyla had especially high relative abundances in two of
the seven L. laticaudata mouth samples only: Patescibacteria
(average for the two samples = 5.06%, total average = 1.59%)
and Tenericutes (average for the two samples = 18.5%, total
average = 5.33%; Figure 1). Planctomycetes was a dominant
phylum in the B. dendrophila mouth samples only (1.61%;
Figure 1). Whereas Verrucomicrobia (L. laticaudata: 6.60%
and B. dendrophila: 1.19%) and Chloroflexi (L. laticaudata:
1.45% and B. dendrophila: 1.97%) were dominant phyla among
L. laticaudata and B. dendrophila mouth samples but were absent
from the T. flavomaculatus samples (Figure 1).

Alpha and Beta Diversity Analyses
Across Host Ecologies, Species, and
Body Site
Significant differences were observed among species-
specific mouth and gut microbiomes for various alpha
diversity metrics evaluated. For mouth microbiome sample
comparisons, Shannon Diversity analyses showed significant
differences among all three species: B. dendrophila vs. T.
flavomaculatus (H = 5.73; p-value = 0.02); B. dendrophila
vs. L. laticaudata (H = 4.69; p-value = 0.03); L. laticaudata
vs. T. flavomaculatus (H = 3.92; p-value = 0.05; Figure 2).
Additionally, Faith’s Phylogenetic diversity analyses supported
a significant difference between the mouth microbiome
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FIGURE 1 | Relative abundance of the dominant bacterial phyla recovered through 16S rRNA amplicon sequencing, with each vertical bar representing an individual
swab. Photos of Boiga and Laticauda by Joseph Brown; Photo of Trimereserus by Kai Wang.

of T. flavomaculatus and both L. laticaudata (H = 5.59;
p-value = 0.02) and B. dendrophila (H = 3.75; p-value = 0.05),
while analysis of observed OTUs showed significant differences
between B. dendrophila and T. flavomaculatus (H = 3.75;
p-value = 0.05; Figure 2). In comparison, analyses of gut samples
supported a significant difference between L. laticaudata and
T. flavomaculatus (H = 7.43; p-value = 0.006) in observed
OTUs, and between B. dendrophila and L. laticaudata
(H = 4.55; p-value = 0.03) for Faith’s Phylogenetic Diversity
analyses (Figure 2).

We used Unweighted- and Weighted-Unifrac distance
matrices in addition to the Bray-Curtis dissimilarity matrix
to analyze beta diversity among mouth and gut microbiome
samples. Unweighted-Unifrac analysis resulted in a significant
difference when comparing T. flavomaculatus mouth samples
to those collected from L. laticaudata (pseudo-F = 2.13;
p-value = 0.011), but no significant difference was found
between B. dendrophila and T. flavomaculatus (pseudo-
F = 1.76; p-value = 0.062) and B. dendrophila and L.
laticaudata mouth samples (pseudo-F = 1.33; p-value = 0.131;
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FIGURE 2 | Alpha diversity (Observed OTUs, Faith’s Phylogenetic Diversity, and Shannon Diversity) of bacterial OTUs by host species and body site.

Supplementary Table S3). Additionally, this analysis found
significant differences among gut samples from the semi-
arboreal and marine species (pseudo-F = 3.68; p-value = 0.004),
the semi-arboreal and arboreal species (pseudo-F = 2.09;
p-value = 0.004), and the arboreal and marine species
(pseudo-F = 3.08; p-value = 0.001; Supplementary Table S3).
When analyzing the habitat types separately, we found
significant differences between the body sites of the marine
(pseudo-F = 3.39; p-value = 0.002) and semi-arboreal species
(pseudo-F = 2.89; p-value = 0.032), but no significant difference
was found between the mouth and gut samples collected
from the arboreal species (pseudo-F = 1.39; p-value = 0.111;
Supplementary Table S3).

Weighted-Unifrac beta diversity analysis of mouth samples
revealed significant differences between all three species (B.
dendrophila vs. L. laticaudata: pseudo-F = 2.47; p-value = 0.048;
B. dendrophila vs. T. flavomaculatus: pseudo-F = 3.92;
p-value = 0.028; L. laticaudata vs. T. flavomaculatus: pseudo-
F = 6.60; p-value = 0.002; Supplementary Table S3). We
found significant differences among gut samples collected
from the semi-arboreal and marine species (pseudo-F = 3.83;
p-value = 0.039) and the arboreal and marine species (pseudo-
F = 6.14; p-value = 0.003), but not among the semi-arboreal
and arboreal species (pseudo-F = 1.11; p-value = 0.352;
Supplementary Table S3). Among marine samples only,
microbiome compositions at the two GIT segments (mouth vs.
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gut) were significantly different (pseudo-F = 4.41; p-value = 0.01),
but not among semi-arboreal (pseudo-F = 3.27; p-value = 0.122)
or arboreal samples (pseudo-F = 0.694; p-value = 0.765;
Supplementary Table S3).

Analysis of beta diversity using Bray-Curtis dissimilarity
matrix yielded significant differences between B. dendrophila and
L. laticaudata (pseudo-F = 2.18; p-value = 0.02), B. dendrophila
and T. flavomaculatus (pseudo-F = 1.78; p-value = 0.034),
and L. laticaudata and T. flavomaculatus (pseudo-F = 3.71;
p-value = 0.003; Supplementary Table S3) mouth samples.
Additionally, significant differences were found among gut
samples collected from the semi-arboreal and marine species
(pseudo-F = 5.40; p-value = 0.003) and the arboreal and
marine species (pseudo-F = 4.88; p-value = 0.001), but
not among the semi-arboreal and arboreal species (pseudo-
F = 1.16; p-value = 0.295; Supplementary Table S3). Samples
collected from the two body sites (mouth vs. gut) were
significantly different among marine samples only (pseudo-
F = 3.67; p-value = 0.001), but no significant difference between
body sites was found among semi-arboreal (pseudo-F = 2.35;
p-value = 0.169) or arboreal samples (pseudo-F = 0.857;
p-value = 1.0; Supplementary Table S3).

DISCUSSION

In this study, we collected samples from 22 snakes representing
three venomous species from the Philippines to investigate
whether host ecology and species differences were correlated
with potential differences in microbial community structure
and diversity within the gut and mouth of the host organisms.
The results of this study broaden our understanding of the
compositional variation of venomous snake microbiomes at
different GIT regions (mouth vs. gut). We found significant
differences between the bacterial communities of these GIT body
sites in the arboreal, semi-arboreal, and marine species, with
these differences being more pronounced in the marine species
across all beta diversity analyses (Supplementary Table S3).
Additionally, when analyzing both GIT body sites separately,
we found mouth microbiome composition and diversity differed
between the three host species, revealing that each of the
focal species harbored unique mouth microbiomes (Figure 3
and Supplementary Figure S2). Host microhabitat preference
(arboreal, semi-arboreal, and marine) was correlated with distinct
gut microbial compositions among the three species (Figure 3
and Supplementary Figure S2). The results of this work add to
our understanding of regionalized microbiome diversity along
the host GIT and establish a foundation for future research to
explore the relationship between host-specific microbiomes and
snake adaptive evolution.

Microbial Community Composition
Across Host Species and Ecologies
The host species investigated in this study are recognized
as members of three distinct snake families (Colubridae:
B. dendrophila; Elapidae: L. laticaudata; Viperidae:
T. flavomaculatus), providing a unique opportunity to explore

interspecific structural differences in the mouth microbiomes
of three distantly related venomous snakes (Figure 3 and
Supplementary Figure S2). More exciting is that the three
species collectively represent two ends of an important ecological
spectrum among vertebrates on the planet—marine vs. terrestrial
species—with the two terrestrial species occupying distinct
microhabitats (arboreal and semi-arboreal). Furthermore, the
host species possess distinct dietary preferences that match
their broad ecological grouping (marine vs. terrestrial), with
the marine species, Laticauda laticaudata, recognized as an eel
specialist (Tabata et al., 2017), and the two terrestrial snakes,
Trimeresurus flavomaculatus and Boiga dendrophila, are dietary
generalists (Creer et al., 2002; Davies and Arbuckle, 2019).
Although the current datasets cannot determine whether
differences in gut and mouth microbiome composition are due
to broader ecological (marine vs. terrestrial), dietary (specialist
vs. generalist), taxonomic (phylogenetic relatedness), or other
yet unidentified factors, we observed significant host-specific
compositional differences in bacterial communities (Figure 3
and Supplementary Figure S2). Additionally, our results reveal
important connections to findings in several recent microbiome
studies in other vertebrate systems.

Interestingly, gut microbial communities in marine
L. laticaudata share compositional similarities to microbiomes
of loggerhead sea turtles (Caretta caretta; Arizza et al., 2019)
and American alligators (Alligator mississippiensis; Keenan et al.,
2013). First, the phylum Epsilonbacteraeota observed recently
in gut microbiome samples of loggerhead sea turtles was found
in the L. laticaudata gut samples only (Figure 1). To date,
Epsilonbacteraeota has not been observed in any other terrestrial
reptile gut microbiome study (Keenan et al., 2013; Colston et al.,
2015; Hyde et al., 2016; Allender et al., 2018; Tang et al., 2019;
Zhang et al., 2019). Second, Fusobacteria has been observed
as a dominant phylum in the gut microbiomes of American
alligators (Keenan et al., 2013) and was observed in L. laticaudata
gut samples only (Figure 1). Fusobacteria are known to play
a role in plaque formation within the oral cavity of mammals
(Mira et al., 2004). However, it has been proposed that the
phylum may be assisting with digestive organ development and
nutrient acquisition in the primarily aquatic American alligators
(Keenan et al., 2013).

In comparison, two phyla were observed in mouth samples of
L. laticaudata only: Patescibacteria and Tenericutes (Figure 1).
We have not encountered a study that includes Patescibacteria
as a dominant phylum in the reptilian mouth or gut
microbiomes, but Tenericutes has been observed in the upper
GIT (stomach and esophagus) of the red-necked keelback,
Rhabdophis subminiatus, a semi-aquatic snake (Tang et al.,
2019), the stomach of the giant African snail (Achatina fulica;
Pawar et al., 2012), the oral and fecal microbiota of a
passerine bird (Parus major; Kropáčková et al., 2017), and
in the gut microbiomes of numerous species of fish (Sullam
et al., 2015; Llewellyn et al., 2016). Tenericutes are also
dominant members of the coral microbiome (Kellogg et al.,
2009; Gray et al., 2011), which adds support for the phylum’s
connection to aquatic, and particularly marine, organisms
(Colston and Jackson, 2016).
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FIGURE 3 | Beta diversity comparisons based on Unweighted- and Weighted-Unifrac distances. (A) Principal Coordinates Analysis (PCoA) of all samples with point
shape indicating different body sites: triangle = mouth sample and circle = gut sample, and point color indicating the different host species: red = Boiga dendrophila,
blue = Laticauda laticaudata, and purple = Trimeresurus flavomaculatus. (B) The associated boxplots generated by the PERMANOVA comparing mouth and gut
microbiome samples from each host species. (C) PCoA of all samples based on Weighted-Unifrac distances with the same point shapes and colors as the
Unweighted-Unifrac PCoA (D) The associated mouth and gut boxplots generated by the PERMANOVA. Each point represents a single swab. For clarification on
sample sizes (n) pre- and post-rarefaction, please see Supplementary Table 1.

In addition to the observed similarities in microbial
community composition among aquatic reptiles, both mouth
and gut samples of the terrestrial snakes (T. flavomaculatus,
B. dendrophila) showed interesting compositional patterns,
with both species dominated by Proteobacteria (Figure 1),

a phylum observed at much lower relative abundance in
most L. laticaudata marine samples, particularly gut samples
(Figure 1). Additionally, one dominant phylum, Planctomycetes,
was observed exclusively in the mouth samples of B. dendrophila
(Figure 1) but has also been observed previously in small relative
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abundances associated with the GIT of red-necked keelback
snakes (Rhabdophis subminiatus; Tang et al., 2019), Galápagos
land iguanas (Conolophus subscristatus; Hong et al., 2011), and
Santa Fe land iguanas (C. pallidus; Hong et al., 2011). Together
these findings reveal new insights into bacterial phyla that may be
associated with reptiles that occupy marine vs. terrestrial habitats
differentially, presenting exciting directions for future research.

Finally, with the three focal snakes each possessing distinct
toxins in their venom (neurotoxin, hemotoxin, and denmotoxin;
Supplementary Table S1), we were interested in how our
findings might relate to microbiome work in other venomous
taxa. Interestingly, members of the phylum Chloroflexi were
present only in the L. laticaudata and B. dendrophila mouth
samples and have been found in the oral cavity of several
other snake species, including the Indian cobra and king cobra,
which like L. laticaudata, are both members of the snake
family Elapidae (Krishnankutty et al., 2018). Given the growing
interest in venomics and improving our understanding of venom
evolution and antimicrobial resistance, it is critical that baseline
datasets be established for the identification and understanding
of host-specific microbiome composition present in venom
microenvironments (Conlin et al., 2014; Adnani et al., 2017;
Esmaeilishirazifard et al., 2018; Krishnankutty et al., 2018).
Our findings add to this small but growing body of literature
with the hope that future studies will be capable of testing
for evidence of coevolutionary processes between mouth and
venom gland microbiomes and the evolution of diverse venom
systems in snakes.

Comparisons to the Culture-Dependent
Snake Microbiome Literature
Although we utilized high-throughput sequencing methods
for our study, similarities can be found with several wild
snake microbiome studies previously conducted using culture-
dependent techniques (Shek et al., 2009; Lam et al., 2011;
Dehghani et al., 2016; Lukač et al., 2017). Lukač et al.
(2017) sampled the oral cavity and cloaca of wild four-lined
snakes (Elaphe quatuorlineata) and reported several genera of
pathogenic bacteria that were also observed in mouth and/or
gut samples in this study. First, T. flavomaculatus gut samples
revealed prominent relative abundances of Bacillus, Escherichia
coli/Shigella spp., Pseudomonas, Serratia, and Stenotrophomonas.
Additionally, among mouth samples analyzed in our study, the
presence and relative abundances of two potentially pathogenic
bacterial genera stood out: (1) Escherichia coli/Shigella spp. were
found in high relative abundances among mouth samples from all
three host species we surveyed (average relative abundances = B.
dendrophila: 10.46%; L. laticaudata: 2.81%; T. flavomaculatus:
25.73%); (2) One B. dendrophila mouth sample had a high relative
abundance of Aeromonas (56.94%), which is a bacterium known
to cause snakebite wound infections (Lam et al., 2011).

Two other culture-dependent studies sampled the oral cavity
of snakes collected from the same location in Hong Kong
(Shek et al., 2009; Lam et al., 2011), also belonging to the same
families as the snakes sampled here (Colubridae, Elapidae, and
Viperidae; Lam et al., 2011). Snakes sampled by Shek et al. (2009)

and Lam et al. (2011) had Providencia rettgeri within their oral
cavities, but the genus was absent from snakes sampled by Lukač
et al. (2017). Comparatively, the bacterial genus Providencia
was observed in high relative abundances (i.e., average relative
abundance 79.69% in T. flavomaculatus) among mouth samples
from each focal host species in our study. Finally, two species of
the bacterial genus Chryseobacterium have been observed in the
oral cavities of the Chinese cobra (Naja atra) and bamboo pit
viper (Trimeresurus albolabris; Shek et al., 2009), and the genus
was also found among T. flavomaculatus mouth samples from
our study (average relative abundance = 6.15%). The presence
of Chryseobacterium and other potentially pathogenic bacteria
observed in our study may indicate that certain host individuals
of the three focal snakes may harbor disease-causing bacteria
within their mouths and guts. This is particularly true for T.
flavomaculatus, which tended to have higher relative abundances
for bacterial genera shown to be potentially pathogenic within
culture-dependent studies conducted to date (Shek et al., 2009;
Lam et al., 2011; Lukač et al., 2017). The implications of this
extend to wildlife trade, where unmanaged and/or illegal trade
of wildlife can have negative impacts on human health, including
zoonotic disease transmission, at times through the consumption
of wild meats (i.e., Covid-19 and HIV-1; Roe, 2008).

CONCLUSION

Despite gradual improvements to our understanding of microbial
differences between distinct body sites across the reptilian GIT
(Keenan et al., 2013; Colston et al., 2015; Hyde et al., 2016; Tang
et al., 2019), there remains a fundamental paucity of information
on the composition, diversity, and functional capabilities of snake
microbiomes (Krishnankutty et al., 2018). However, developing
a baseline understanding of venomous snake microbiomes with
regional associations in the body (e.g., GIT vs. venom gland)
will be vital in order to address the important roles host-
specific microbiomes may have played in venomous snake
adaptive evolution. Additionally, although the use of 16S rRNA
gene amplicon sequencing is often the first step to elucidating
important patterns on compositional differences among host-
associated bacterial communities, other genomic sequencing
technologies (i.e., shotgun metagenomic sequencing) present
exciting opportunities to begin identifying potential functional
roles of these microbiomes and how they interact with their
hosts (Rebollar et al., 2018). With the results of this comparative
study of three different host species, each representing a unique
snake family (Colubridae, Elapidae, Viperidae), we can continue
to address this information gap for one of the most ecologically
diverse and speciose vertebrate groups on the planet.
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